
MATLAB® Compiler™
Hadoop® Integration Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler™ Hadoop® Integration Guide
© COPYRIGHT 2014–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
October 2014 Online only New for Version 5.2 (Release 2014b)
March 2015 Online only Revised for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
October 2015 Online only Rereleased for Version 6.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online Only Revised for Version 6.3 (Release 2016b)
March 2017 Online only Revised for Version 6.4 (Release R2017a)
September 2017 Online only Revised for Version 6.5 (Release R2017b)
March 2018 Online only Revised for Version 6.6 (Release R2018a)
September 2018 Online only Revised for Version 7.0 (Release R2018b)
March 2019 Online only Revised for Version 7.0.1 (Release R2019a)
September 2019 Online only Revised for Version 7.1 (Release R2019b)
March 2020 Online only Revised for Version 8.0 (Release R2020a)
September 2020 Online only Revised for Version 8.1 (Release R2020b)
March 2021 Online only Revised for Version 8.2 (Release R2021a)
September 2021 Online only Revised for Version 8.3 (Release R2021b)
March 2022 Online only Revised for Version 8.4 (Release R2022a)
September 2022 Online only Revised for Version 8.5 (Release R2022b)
March 2023 Online only Revised for Version 8.6 (Release R2023a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Deployable Archives
1

Workflow to Incorporate MATLAB Map and Reduce Functions into a
Hadoop Job . 1-2

Example Using the Hadoop Compiler App Workflow 1-5
Prerequisites . 1-5
Procedure . 1-6

Include MATLAB Map and Reduce Functions into Hadoop Job 1-9

Standalone Applications
2

Workflow to Run Compiled Standalone Applications Against a Hadoop
Cluster . 2-2

Run Standalone MATLAB MapReduce Application 2-4
Prerequisites . 2-4
Procedure . 2-5

Hadoop Configuration
3

Configuration File for Creating Deployable Archive Using the mcc
Command . 3-2

Sample Configuration File . 3-2

Functions
4

Apps
5

iii

Contents

Deployable Archives

• “Workflow to Incorporate MATLAB Map and Reduce Functions into a Hadoop Job” on page 1-2
• “Example Using the Hadoop Compiler App Workflow” on page 1-5
• “Include MATLAB Map and Reduce Functions into Hadoop Job” on page 1-9

1

Workflow to Incorporate MATLAB Map and Reduce Functions
into a Hadoop Job

1 Write mapper and reducer functions in MATLAB.
2 Create a MAT-file that contains a datastore that describes the structure of the data and the

names of the variables to analyze. The datastore in the MAT-file can be created from a test data
set that is representative of the actual data set.

3 Create a text file that contains Hadoop settings such as the name of the mapper, reducer, and the
type of data being analyzed. This file is automatically created if you are using the Hadoop
Compiler app.

4 Use the Hadoop Compiler app or the mcc command to package the components into a
deployable archive. Both options generate a deployable archive (.ctf file) that can be
incorporated into a Hadoop mapreduce job.

1 Deployable Archives

1-2

5 Incorporate the deployable archive into a Hadoop mapreduce job using the hadoop command
and syntax.

Execution Signature

Key

Letter Description
A Hadoop command
B JAR option
C The standard name of the JAR file. All applications have the same JAR:

mwmapreduce.jar.The path to the JAR is also fixed relative to the MATLAB
Runtime location.

D The standard name of the driver. All applications have the same driver name:
MWMapReduceDriver

E A generic option specifying the MATLAB Runtime location as a key-value pair.
F Deployable archive (.ctf file) generated by the Hadoop Compiler app or mcc is

passed as a payload argument to the job.
G Location of input files on HDFS™.
H Location on HDFS where output can be written.

To simplify the inclusion of the deployable archive (.ctf file) into a Hadoop mapreduce job, both the
Hadoop Compiler app and the mcc command generate a shell script alongside the deployable
archive. The shell script has the following naming convention: run_<deployableArchiveName>.sh

To run the deployable archive using the shell script, use the following syntax:

 Workflow to Incorporate MATLAB Map and Reduce Functions into a Hadoop Job

1-3

See Also

Related Examples
• “Example Using the Hadoop Compiler App Workflow” on page 1-5
• “Include MATLAB Map and Reduce Functions into Hadoop Job” on page 1-9

1 Deployable Archives

1-4

Example Using the Hadoop Compiler App Workflow
Supported Platform: Linux® only.

This example shows you how to use the Hadoop Compiler app to create a deployable archive
consisting of MATLAB map and reduce functions and then pass the deployable archive as a payload
argument to a job submitted to a Hadoop cluster.

Goal: Calculate the maximum arrival delay of an airline from the given dataset.

Dataset: airlinesmall.csv
Description: Airline departure and arrival information from 1987-2008.
Location: /usr/local/MATLAB/R2023a/toolbox/matlab/demos

Prerequisites
1 Start this example by creating a new work folder that is visible to the MATLAB search path.
2 Before starting MATLAB, at a terminal, set the environment variable HADOOP_PREFIX to point to

the Hadoop installation folder. For example:

Shell Command
csh / tcsh % setenv HADOOP_PREFIX /usr/lib/hadoop

bash $ export HADOOP_PREFIX=/usr/lib/hadoop

Note This example uses /usr/lib/hadoop as directory where Hadoop is installed. Your
Hadoop installation directory maybe different.

If you forget setting the HADOOP_PREFIX environment variable prior to starting MATLAB, set it
up using the MATLAB function setenv at the MATLAB command prompt as soon as you start
MATLAB. For example:

setenv('HADOOP_PREFIX','/usr/lib/hadoop')
3 Install the MATLAB Runtime in a folder that is accessible by every worker node in the Hadoop

cluster. This example uses /usr/local/MATLAB/MATLAB_Runtime/R2023a as the location of
the MATLAB Runtime folder.

If you don’t have the MATLAB Runtime, you can download it from the website at: https://
www.mathworks.com/products/compiler/mcr.

Note For information about MATLAB Runtime version numbers corresponding MATLAB
releases, see this list.

4 Copy the map function maxArrivalDelayMapper.m from /usr/local/MATLAB/R2023a/
toolbox/matlab/demos folder to the work folder.

 Example Using the Hadoop Compiler App Workflow

1-5

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

maxArrivalDelayMapper.m

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore,'PartialMaxArrivalDelay',partMax);

For more information, see “Write a Map Function”.
5 Copy the reduce function maxArrivalDelayReducer.m from matlabroot/toolbox/matlab/

demos folder to the work folder.

maxArrivalDelayReducer.m

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
maxVal = -inf;
while hasnext(intermValIter)
 maxVal = max(getnext(intermValIter), maxVal);
end
add(outKVStore,'MaxArrivalDelay',maxVal);

For more information, see “Write a Reduce Function”.
6 Create the directory /user/<username>/datasets on HDFS and copy the file

airlinesmall.csv to that directory. Here <username> refers to your user name in HDFS.

$./hadoop fs -copyFromLocal airlinesmall.csv hdfs://host:54310/user/<username>/datasets

Procedure
1 Start MATLAB and verify that the HADOOP_PREFIX environment variable has been set. At the

command prompt, type:

>> getenv('HADOOP_PREFIX')

If ans is empty, review the Prerequisites section above to see how you can set the
HADOOP_PREFIX environment variable.

2 Create a datastore to the file airlinesmall.csv and save it to a .mat file. This datastore
object is meant to capture the structure of your actual dataset on HDFS.

ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
 'SelectedVariableNames','ArrDelay','ReadSize',1000);

save('infoAboutDataset.mat','ds')

In most cases, you will start off by working on a small sample dataset residing on a local machine
that is representative of the actual dataset on the cluster. This sample dataset has the same
structure and variables as the actual dataset on the cluster. By creating a datastore object to
the dataset residing on your local machine you are taking a snapshot of that structure. By having
access to this datastore object, a Hadoop job executing on the cluster will know how to access
and process the actual dataset residing on HDFS.

Note In this example, the sample dataset (local) and the actual dataset on HDFS are the same.
3 Launch the Hadoop Compiler app through the MATLAB command line (>> hadoopCompiler)

or through the apps gallery.

1 Deployable Archives

1-6

4 In the Map Function section of the toolstrip, click the plus button to add mapper file
maxArrivalDelayMapper.m.

5 In the Reduce Function section of the toolstrip, click the plus button to add reducer file
maxArrivalDelayReducer.m.

6 In the Datastore File section, click the plus button to add the .mat file
infoAboutDataset.mat containing the datastore object.

7 In the Output Types section, select keyvalue as output type. Selecting keyvalue as your
output type means your results can only be read within MATLAB. If you want your results to be
accessible outside of MATLAB, select output type as tabulartext.

8 Rename the MapReduce job payload information to maxArrivalDelay.
9 Click Package to build a deployable archive.

The Hadoop Compiler app creates a log file PackagingLog.txt and two folders
for_redistribution and for_testing.

for_redistribution for_testing
readme.txt readme.txt
maxArrivalDelay.ctf maxArrivalDelay.ctf
run_maxArrivalDelay.sh run_maxArrivalDelay.sh
 mccExcludedFiles.log
 requiredMCRProducts.txt

You can use the log file PackagingLog.txt to see the exact mcc syntax used to package the
deployable archive.

10 From a Linux shell navigate to the for_redistribution folder.
11 a Incorporate the deployable archive containing MATLAB map and reduce functions into a

Hadoop mapreduce job from a Linux shell using the following command:

$ hadoop \
jar /usr/local/MATLAB/MATLAB_Runtime/R2023a/toolbox/mlhadoop/jar/a2.2.0/mwmapreduce.jar \
com.mathworks.hadoop.MWMapReduceDriver \
-D mw.mcrroot=/usr/local/MATLAB/MATLAB_Runtime/R2023a \
maxArrivalDelay.ctf \

 Example Using the Hadoop Compiler App Workflow

1-7

hdfs://host:54310/user/<username>/datasets/airlinesmall.csv \
hdfs://host:54310/user/<username>/results

b Alternately, you can incorporate the deployable archive containing MATLAB map and reduce
functions into a Hadoop mapreduce job using the shell script generated by the Hadoop
Compiler app. At the Linux shell type the following command:

$./run_maxArrivalDelay.sh \
/usr/local/MATLAB/MATLAB_Runtime/R2023a \
-D mw.mcrroot=/usr/local/MATLAB/MATLAB_Runtime/R2023a \
hdfs://host:54310/user/username/datasets/airlinesmall.csv \
hdfs://host:54310/user/<username>/results

12 To examine the results, switch to the MATLAB desktop and create a datastore to the results on
HDFS. You can then view the results using the read method.

d = datastore('hdfs:///user/<username>/results/part*');
read(d)

ans =

 Key Value
 _________________ ______

 'MaxArrivalDelay' [1014]

Other examples of map and reduce functions are available at toolbox/matlab/demos folder. You
can use other examples to prototype similar deployable archives to run on a Hadoop cluster. For more
information, see “Build Effective Algorithms with MapReduce”.

See Also
datastore | TabularTextDatastore | KeyValueDatastore | deploytool

Related Examples
• “Include MATLAB Map and Reduce Functions into Hadoop Job” on page 1-9

1 Deployable Archives

1-8

Include MATLAB Map and Reduce Functions into Hadoop Job
Supported Platform: Linux only.

This example shows you how to use the mcc command to create a deployable archive consisting of
MATLAB map and reduce functions and then pass the deployable archive as a payload argument to a
job submitted to a Hadoop cluster.

Goal: Calculate the maximum arrival delay of an airline from the given dataset.

Dataset: airlinesmall.csv
Description: Airline departure and arrival information from 1987-2008.
Location: /usr/local/MATLAB/R2023a/toolbox/matlab/demos

Note When compared to the Hadoop Compiler app workflow, this workflow requires the explicit
creation of a Hadoop settings file. Follow the example for details.

Prerequisites

1 Start this example by creating a new work folder that is visible to the MATLAB search path.
2 Before starting MATLAB, at a terminal, set the environment variable HADOOP_PREFIX to point to

the Hadoop installation folder. For example:

Shell Command
csh / tcsh % setenv HADOOP_PREFIX /usr/lib/hadoop

bash $ export HADOOP_PREFIX=/usr/lib/hadoop

Note This example uses /usr/lib/hadoop as directory where Hadoop is installed. Your
Hadoop installation directory maybe different.

If you forget setting the HADOOP_PREFIX environment variable prior to starting MATLAB, set it
up using the MATLAB function setenv at the MATLAB command prompt as soon as you start
MATLAB. For example:

setenv('HADOOP_PREFIX','/usr/lib/hadoop')
3 Install the MATLAB Runtime in a folder that is accessible by every worker node in the Hadoop

cluster. This example uses /usr/local/MATLAB/MATLAB_Runtime/R2023a as the location of
the MATLAB Runtime folder.

If you don’t have the MATLAB Runtime, you can download it from the website at: https://
www.mathworks.com/products/compiler/mcr.

Note For information about MATLAB Runtime version numbers corresponding MATLAB
releases, see this list.

4 Copy the map function maxArrivalDelayMapper.m from /usr/local/MATLAB/R2023a/
toolbox/matlab/demos folder to the work folder.

 Include MATLAB Map and Reduce Functions into Hadoop Job

1-9

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

maxArrivalDelayMapper.m

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore,'PartialMaxArrivalDelay',partMax);

For more information, see “Write a Map Function”.
5 Copy the reduce function maxArrivalDelayReducer.m from matlabroot/toolbox/matlab/

demos folder to the work folder.

maxArrivalDelayReducer.m

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
maxVal = -inf;
while hasnext(intermValIter)
 maxVal = max(getnext(intermValIter), maxVal);
end
add(outKVStore,'MaxArrivalDelay',maxVal);

For more information, see “Write a Reduce Function”.
6 Create the directory /user/<username>/datasets on HDFS and copy the file

airlinesmall.csv to that directory. Here <username> refers to your user name in HDFS.

$./hadoop fs -copyFromLocal airlinesmall.csv hdfs://host:54310/user/<username>/datasets

Procedure

1 Start MATLAB and verify that the HADOOP_PREFIX environment variable has been set. At the
command prompt, type:

>> getenv('HADOOP_PREFIX')

If ans is empty, review the Prerequisites section above to see how you can set the
HADOOP_PREFIX environment variable.

2 Create a datastore to the file airlinesmall.csv and save it to a .mat file. This datastore
object is meant to capture the structure of your actual dataset on HDFS.

ds = datastore('airlinesmall.csv','TreatAsMissing','NA',...
 'SelectedVariableNames','ArrDelay','ReadSize',1000);

save('infoAboutDataset.mat','ds')

In most cases, you will start off by working on a small sample dataset residing on a local machine
that is representative of the actual dataset on the cluster. This sample dataset has the same
structure and variables as the actual dataset on the cluster. By creating a datastore object to
the dataset residing on your local machine you are taking a snapshot of that structure. By having
access to this datastore object, a Hadoop job executing on the cluster will know how to access
and process the actual dataset residing on HDFS.

Note In this example, the sample dataset (local) and the actual dataset on HDFS are the same.
3 Create a configuration file (config.txt) that specifies the input type of the data, the format of

the data specified by the datastore created in the previous step, the output type of the data,
the name of map function, and the name of reduce function.

mw.ds.in.type = tabulartext
mw.ds.in.format = infoAboutDataset.mat

1 Deployable Archives

1-10

mw.ds.out.type = keyvalue
mw.mapper = maxArrivalDelayMapper
mw.reducer = maxArrivalDelayReducer

For more information, see “Configuration File for Creating Deployable Archive Using the mcc
Command” on page 3-2.

4 Use the mcc command with the -H and -W flags to create a deployable archive. However, the mcc
command cannot package the results in an installer. The command must be entered as a single
line.
mcc -H -W 'hadoop:maxArrivalDelay,CONFIG:config.txt'
 maxArrivalDelayMapper.m maxArrivalDelayReducer.m
 -a infoAboutDataset.mat

For more information, see mcc.

MATLAB Compiler creates a shell script run_maxarrivaldelay.sh, a deployable archive
airlinesmall.ctf, and a log file mccExcludedfiles.log.

5 a Incorporate the deployable archive containing MATLAB map and reduce functions into a
Hadoop mapreduce job from a Linux shell using the following command:

$ hadoop \
jar /usr/local/MATLAB/MATLAB_Runtime/R2023a/toolbox/mlhadoop/jar/a2.2.0/mwmapreduce.jar \
com.mathworks.hadoop.MWMapReduceDriver \
-D mw.mcrroot=/usr/local/MATLAB/MATLAB_Runtime/R2023a \
maxArrivalDelay.ctf \
hdfs://host:54310/user/<username>/datasets/airlinesmall.csv \
hdfs://host:54310/user/<username>/results

b Alternately, you can incorporate the deployable archive containing MATLAB map and reduce
functions into a Hadoop mapreduce job using the shell script generated by the Hadoop
Compiler app. At the Linux shell type the following command:

$./run_maxArrivalDelay.sh \
/usr/local/MATLAB/MATLAB_Runtime/R2023a \
-D mw.mcrroot=/usr/local/MATLAB/MATLAB_Runtime/R2023a \
hdfs://host:54310/user/username/datasets/airlinesmall.csv \
hdfs://host:54310/user/<username>/results

6 To examine the results, switch to the MATLAB desktop and create a datastore to the results on
HDFS. You can then view the results using the read method.

d = datastore('hdfs:///user/<username>/results/part*');
read(d)

ans =

 Key Value
 _________________ ______

 'MaxArrivalDelay' [1014]

Other examples of map and reduce functions are available at toolbox/matlab/demos folder. You
can use other examples to prototype similar deployable archives that run against Hadoop. For more
information, see “Build Effective Algorithms with MapReduce”.

See Also
datastore | TabularTextDatastore | KeyValueDatastore | mcc | deploytool

 Include MATLAB Map and Reduce Functions into Hadoop Job

1-11

Related Examples
• “Example Using the Hadoop Compiler App Workflow” on page 1-5

1 Deployable Archives

1-12

Standalone Applications

• “Workflow to Run Compiled Standalone Applications Against a Hadoop Cluster” on page 2-2
• “Run Standalone MATLAB MapReduce Application” on page 2-4

2

Workflow to Run Compiled Standalone Applications Against a
Hadoop Cluster

1 Write mapper and reducer functions in MATLAB.
2 Write a MATLAB application script or function that calls the mapper and reducer functions. While

writing applications it is preferable to structure them as MATLAB functions over scripts since
functions accept inputs. End users can make use of this and pass inputs such as the location of
the data to the application.

3 Use the Application Compiler app or the mcc command to package your application as a
standalone application. Both options generate an executable and a shell script to run the
executable.

4 Run the shell scripts at the terminal. Specify the location of MATLAB Runtime and any inputs the
application takes.

2 Standalone Applications

2-2

Execution Signature

See Also

Related Examples
• “Run Standalone MATLAB MapReduce Application” on page 2-4

 Workflow to Run Compiled Standalone Applications Against a Hadoop Cluster

2-3

Run Standalone MATLAB MapReduce Application
Supported Platform: Linux only.

This example shows you how to create a standalone MATLAB MapReduce application using the mcc
command and run it against a Hadoop cluster.

Goal: Calculate the maximum arrival delay of an airline from the given dataset.

Dataset: airlinesmall.csv
Description: Airline departure and arrival information from 1987-2008.
Location: /usr/local/MATLAB/R2023a/toolbox/matlab/demos

Prerequisites
1 Start this example by creating a new work folder that is visible to the MATLAB search path.
2 Before starting MATLAB, at a terminal, set the environment variable HADOOP_PREFIX to point to

the Hadoop installation folder. For example:

Shell Command
csh / tcsh % setenv HADOOP_PREFIX /usr/lib/hadoop

bash $ export HADOOP_PREFIX=/usr/lib/hadoop

Note This example uses /usr/lib/hadoop as directory where Hadoop is installed. Your
Hadoop installation directory maybe different.

If you forget setting the HADOOP_PREFIX environment variable prior to starting MATLAB, set it
up using the MATLAB function setenv at the MATLAB command prompt as soon as you start
MATLAB. For example:

setenv('HADOOP_PREFIX','/usr/lib/hadoop')
3 Install the MATLAB Runtime in a folder that is accessible by every worker node in the Hadoop

cluster. This example uses /usr/local/MATLAB/MATLAB_Runtime/R2023a as the location of
the MATLAB Runtime folder.

If you don’t have the MATLAB Runtime, you can download it from the website at: https://
www.mathworks.com/products/compiler/mcr.

Note For information about MATLAB Runtime version numbers corresponding MATLAB
releases, see this list.

4 Copy the map function maxArrivalDelayMapper.m from /usr/local/MATLAB/R2023a/
toolbox/matlab/demos folder to the work folder.

maxArrivalDelayMapper.m

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore,'PartialMaxArrivalDelay',partMax);

2 Standalone Applications

2-4

https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html
https://www.mathworks.com/products/compiler/matlab-runtime.html

For more information, see “Write a Map Function”.
5 Copy the reduce function maxArrivalDelayReducer.m from matlabroot/toolbox/matlab/

demos folder to the work folder.

maxArrivalDelayReducer.m

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
maxVal = -inf;
while hasnext(intermValIter)
 maxVal = max(getnext(intermValIter), maxVal);
end
add(outKVStore,'MaxArrivalDelay',maxVal);

For more information, see “Write a Reduce Function”.
6 Create the directory /user/<username>/datasets on HDFS and copy the file

airlinesmall.csv to that directory. Here <username> refers to your user name in HDFS.

$./hadoop fs -copyFromLocal airlinesmall.csv hdfs://host:54310/user/<username>/datasets

Procedure
1 Start MATLAB and verify that the HADOOP_PREFIX environment variable has been set. At the

command prompt, type:

>> getenv('HADOOP_PREFIX')

If ans is empty, review the Prerequisites section above to see how you can set the
HADOOP_PREFIX environment variable.

2 Create a new MATLAB script with the name depMapRedStandAlone.m. You will add the code
listed in the steps listed below to this script file.

3 Create a datastore that points to the airline data in Hadoop Distributed File System (HDFS) .

ds = datastore('hdfs:///user/username/datasets/airlinesmall.csv',...
'TreatAsMissing','NA',...
'SelectedVariableNames',{'UniqueCarrier','ArrDelay'});

For more information, see “Work with Remote Data”.
4 Configure the application for deployment against Hadoop with default settings.

config = matlab.mapreduce.DeployHadoopMapReducer;

The class matlab.mapreduce.DeployHadoopMapReducer can be used to configure a
standalone application based on the Hadoop environment where it is going to be deployed.

For example, if you want to specify the location of the MATLAB Runtime on each of the worker
nodes on the cluster, include a line of code similar to this:

config = matlab.mapreduce.DeployHadoopMapReducer('MCRRoot','/opt/MATLAB/MATLAB_Runtime/R2023a');

In this scenario, we assume that the MATLAB Runtime is installed in a non-default location such
as /opt/MATLAB/MATLAB_Runtime on the worker nodes.

For information on specifying additional cluster specific properties, see
matlab.mapreduce.DeployHadoopMapReducer.

 Run Standalone MATLAB MapReduce Application

2-5

Note Specifying a MATLAB Runtime location as part of the class
matlab.mapreduce.DeployHadoopMapReducer will override any MATLAB Runtime location
specified during the execution of the standalone application.

5 Define the execution environment using the mapreducer.

mr = mapreducer(config);
6 Apply the mapreduce function.

result = mapreduce(...
 ds,...
 @maxArrivalDelayMapper,@maxArrivalDelayReducer,...
 mr,...
 'OutputType','Binary', ...
 'OutputFolder','hdfs:///user/<username>/results/myresults');

Note An HDFS directory such as .../myresults can be written to only once. If you plan on
running your standalone application multiple times against the Hadoop cluster, make sure you
delete the .../myresults directory on HDFS prior to each execution. Another option is to
change the name of the .../myresults directory in the MATLAB code and recompile the
application.

7 Read the result from the resulting datastore.

myAppResult = readall(result)
8 Use the mcc command with the -m flag to create a standalone application.

mcc -m depMapRedStandAlone.m

The -m flag creates a standard executable that can be run from a command line. However, the
mcc command cannot package the results in an installer.

9 Run the standalone application from a Linux shell using the following command:

$./run_depMapRedStandAlone.sh /usr/local/MATLAB/MATLAB_Runtime/R2023a

/usr/local/MATLAB/MATLAB_Runtime/R2023a is an argument indicating the location of the
MATLAB Runtime.

Prior to executing the above command, verify that the HADOOP_PREFIX environment variable is
set in the Terminal by typing:

$ echo $HADOOP_PREFIX

If echo comes up empty, see the Prerequisites section above to see how you can set the
HADOOP_PREFIX environment variable.

Your application will fail to execute if the HADOOP_PREFIX environment variable is not set.
10 You will see the following output:

myAppResult =

 Key Value
 _________________ ______

 'MaxArrivalDelay' [1014]

2 Standalone Applications

2-6

Other examples of map and reduce functions are available at toolbox/matlab/demos folder. You
can use other examples to prototype similar standalone applications that run against Hadoop. For
more information, see “Build Effective Algorithms with MapReduce”.

Complete code for the standalone application depMapRedStandAlone can be found here:

depMapRedStandAlone.m

%% Create datastore
ds = datastore(...
 'hdfs:///user/username/datasets/airlinesmall.csv',...
 'TreatAsMissing','NA',...
 'SelectedVariableNames',{'UniqueCarrier','ArrDelay'});

%% Configure application for deployment against Hadoop with default settings
config = matlab.mapreduce.DeployHadoopMapReducer;

%% Define the execution environment
mr = mapreducer(config);

%% Apply the mapreduce function
result = mapreduce(...
 ds,...
 @maxArrivalDelayMapper,@maxArrivalDelayReducer,...
 mr,...
 'OutputType','Binary', ...
 'OutputFolder','hdfs:///user/username/results/myresults');

%% Read the result from the resulting datastore
myAppResult = readall(result)

See Also
datastore | TabularTextDatastore | KeyValueDatastore |
matlab.mapreduce.DeployHadoopMapReducer | mcc

Related Examples
• “Create Standalone Application from MATLAB Function”
• “Pass Parallel Computing Toolbox Profile at Run Time”

 Run Standalone MATLAB MapReduce Application

2-7

Hadoop Configuration

3

Configuration File for Creating Deployable Archive Using the
mcc Command

When creating a deployable archive using the mcc command, you must create a text file containing
the following information:

Parameter Type Description
mw.ds.out.type Output type of data from Hadoop mapreduce job

The options are:

• keyvalue
• tabulartext

mw.mapper Name of MATLAB map function
mw.reducer Name of MATLAB reduce function
mw.ds.in.format Name of MAT-file containing a datastore object representing the

format of the data to be processed.

In most cases, you will start off by working on a small sample dataset
residing on a local machine that is representative of the actual dataset
on the cluster. This sample dataset has the same structure and variables
as the actual dataset on the cluster. By creating a datastore object to
the dataset residing on your local machine you are taking a snapshot of
that structure. By having access to this datastore object, a Hadoop job
executing on the cluster will know how to access and process the actual
dataset residing on HDFS.

mw.ds.in.type Input type of data to Hadoop mapreduce job

The options are:

• keyvalue
• tabulartext

mw.ds.in.fullfile Default value is false

Sample Configuration File
config.txt

mw.ds.out.type = keyvalue
mw.mapper = maxArrivalDelayMapper
mw.reducer = maxArrivalDelayReducer
mw.ds.in.format = infoAboutDataset.mat
mw.ds.in.type = tabulartext

3 Hadoop Configuration

3-2

See Also

Related Examples
• “Include MATLAB Map and Reduce Functions into Hadoop Job” on page 1-9

 Configuration File for Creating Deployable Archive Using the mcc Command

3-3

Functions

4

deploytool
Open a list of application deployment apps

Syntax
deploytool
deploytool project_name

Description
deploytool opens a list of application deployment apps.

deploytool project_name opens the appropriate deployment app with the project preloaded.

Examples

Open a List of Application Deployment Apps

Open the list of apps.

deploytool

A list opens with the following options:

• Application Compiler
• Hadoop Compiler
• Library Compiler
• Production Server Compiler (if MATLAB Compiler SDK™ is installed)
• Web App Compiler

Input Arguments
project_name — name of the project to be opened
character array or string

Name of the project to be opened by the appropriate deployment app, specified as a character array
or string. The project must be on the current path.

Version History
Introduced in R2006b

R2020a: -build and -package options will be removed
Warns starting in R2020a

4 Functions

4-2

The -build and -package options will be removed. To build applications, use one of the
compiler.build family of functions or the mcc command; and to package and create an installer,
use the compiler.package.installer function.

 deploytool

4-3

matlab.mapreduce.DeployHadoopMapReducer
class
Package: matlab.mapreduce

Configure a MapReduce application for deployment against Hadoop

Description
A DeployHadoopMapReducer object represents executing MapReduce on a Hadoop cluster with
MATLAB Runtime.

Construction
config = matlab.mapreduce.DeployHadoopMapReducer creates a
matlab.mapreduce.DeployHadoopMapReducer object that specifies the default properties for
Hadoop execution.

Use the resulting object as input to the mapreducer function to specify the configuration properties
for Hadoop execution. For deploying a standalone application, pass the
matlab.mapreduce.DeployHadoopMapReducer object as input to mapreduce.

config = matlab.mapreduce.DeployHadoopMapReducer(Name,Value) creates a
matlab.mapreduce.DeployHadoopMapReducer object with properties specified by one or more
name-value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

HadoopInstallFolder — Path to Hadoop installation
character vector | string scalar

Path to Hadoop installation, specified as the comma-separated pair consisting of the
HadoopInstallFolder and a character vector or a string scalar.

The default value of Hadoop install folder is specified by the environment variables in the order of
precedence of MATLAB_HADOOP_INSTALL, HADOOP_PREFIX, and HADOOP_HOME.

HadoopConfigurationFile — Path to Hadoop application configuration files
character vector | string scalar

Path to Hadoop application configuration files, specified as the comma-separated pair consisting of
the HadoopConfigurationFile and a character vector or a string scalar.

4 Functions

4-4

MCRRoot — MATLAB Runtime installation folder for Hadoop cluster
character vector | string scalar

MATLAB Runtime installation folder for Hadoop cluster, specified as the comma-separated pair
consisting of the MCRRoot and a character vector or a string scalar.

MCRRoot specifies the MATLAB Runtime installation folder used by Hadoop when executing
mapreduce tasks in Hadoop.
Example: 'MCRRoot','/hd-shared/hadoop-2.2.0/MCR/v84'

HadoopProperties — Job or application-specific Hadoop configuration properties
containers.Map

A containers.Map object of name-value pairs that specify Hadoop configuration properties for a
specific job or application. Name-value pairs must be specified as character vectors.

The properties specified in the containers.Map object are passed as a [GENERIC_OPTION]
consisting of name-value pairs signaled by a -D flag to the hadoop shell command.

Example:

setenv('HADOOP_PREFIX', '/usr/lib/hadoop') % replace with your Hadoop install location
name = {'mapreduce.map.maxattempts','mapreduce.job.reduces'};
value = {'2','1'};
prop = containers.Map(name,value);
obj = matlab.mapreduce.DeployHadoopMapReducer('HadoopProperties', prop)

Examples

Create a Deploy Hadoop MapReducer object

Create and use a matlab.mapreduce.DeployHadoopMapReducer object to deploy into a
standalone application, and deploy against Hadoop.

config = matlab.mapreduce.DeployHadoopMapReducer('MCRRoot',...
 '/hd-shared/hadoop-2.2.0/MCR/v84');
mr = mapreducer(config);

See Also
mapreduce | mapreducer

Topics
“Run Standalone MATLAB MapReduce Application” on page 2-4

 matlab.mapreduce.DeployHadoopMapReducer class

4-5

hadoopCompiler
(Not recommended) Package MATLAB Compiler programs for deployment against Hadoop clusters as
MapReduce programs

Note The hadoopCompiler function will be removed in a future release. To create standalone
MATLAB® MapReduce applications, or deployable archives from MATLAB map and reduce functions,
use the mcc command. For details, see “Compatibility Considerations”.

Syntax
hadoopCompiler
hadoopCompiler project_name

Description
hadoopCompiler opens the Hadoop Compiler app.

hadoopCompiler project_name opens Hadoop Compiler app with the project preloaded.

Examples

Create a New Hadoop Compiler Project

Open the Hadoop compiler app to create a new project.

hadoopCompiler

Input Arguments
project_name — name of the project to be compiled
character array or string

Name of previously saved MATLAB Compiler project to be compiled, specified as a character array or
string. The project must be on the current path.

Version History
Introduced in R2014b

R2020a: hadoopCompiler will be removed
Not recommended starting in R2020a

hadoopCompiler will be removed. To create standalone MATLAB MapReduce applications or
deployable archives from MATLAB map and reduce functions use the mcc command.

4 Functions

4-6

See Also
deploytool | mcc

 hadoopCompiler

4-7

mapreducer
Define deployed execution for mapreduce

Syntax
mapreducer(config)
mr = mapreducer(config)

Description
Use this function with MATLAB Compiler to specify information about the execution environment for
standalone applications that execute against Hadoop.

mapreducer(config) specifies execution environment. When deploying a standalone application
against Hadoop, config is an object of matlab.mapreduce.DeployHadoopMapReducer class.

mr = mapreducer(config) returns a MapReducer object to specify the execution environment.
You can define MapReducer objects, allowing you to swap execution environments by passing one as
an input argument to mapreduce.

Examples
Create a mapreducer object in deployed mode

mr = mapreducer(...
 matlab.mapreduce.DeployHadoopMapReducer('MCRRoot',...
 '/hd-shared/hadoop-2.2.0/MCR/v84'))

Input Arguments
config — mapreducer object for running in deployed environment
matlab.mapreduce.DeployHadoopMapReducer object

mapreducer object for running in deployed environment, specified as a
matlab.mapreduce.DeployHadoopMapReducer object.
Example: config =
mapreducer(matlab.mapreduce.DeployHadoopMapReducer('MCRRoot','/hd-shared/
hadoop-2.2.0/MCR/v84'))

Output Arguments
mr — Execution environment for mapreduce
mapreducer object

Execution environment for mapreduce, returned as a mapreducer object.

4 Functions

4-8

Tips
• mapreducer and mapreducer(0) enables different configurations based on the products you

have. In MATLAB, the mapreduce function automatically runs using a SerialMapReducer. For
more information, see mapreducer.

If you have Parallel Computing Toolbox™, see the function reference page for mapreducer for
additional information.

Version History
Introduced in R2014b

See Also
Functions
mapreduce | gcmr

Classes
matlab.mapreduce.DeployHadoopMapReducer

Topics
“Run Standalone MATLAB MapReduce Application” on page 2-4

 mapreducer

4-9

Apps

5

Hadoop Compiler
Package MATLAB programs for deployment to Hadoop clusters as MapReduce programs

Note The Hadoop Compiler app will be removed in a future release. To create standalone
MATLAB® MapReduce applications, or deployable archives from MATLAB map and reduce functions,
use the mcc command. For details, see “Compatibility Considerations”.

Description
The Hadoop Compiler app packages MATLAB map and reduce functions into a deployable archive.
You can incorporate the archive into a Hadoop mapreduce job by passing it as a payload argument to
job submitted to a Hadoop cluster.

Open the Hadoop Compiler App
• MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app icon.
• MATLAB command prompt: Enter hadoopCompiler.

5 Apps

5-2

Parameters
map function — mapper file
character vector

Function for the mapper, specified as a character vector.

reduce function — reducer file
character vector

Function for the reducer, specified as a character vector.

datastore file — file containing a datastore representing the data to be processed
character vector

A file containing a datastore representing the data to be processed, specified as a character vector.

In most cases, you will start off by working on a small sample dataset residing on a local machine that
is representative of the actual dataset on the cluster. This sample dataset has the same structure and
variables as the actual dataset on the cluster. By creating a datastore object to the dataset residing
on your local machine you are taking a snapshot of that structure. By having access to this datastore
object, a Hadoop job executing on the cluster will know how to access and process the actual dataset
residing on HDFS.

output types — format of output
keyvalue (default) | tabulartext

Format of output from Hadoop mapreduce job, specified as a keyvalue or tabular text.

additional configuration file content — additional parameters configuring how Hadoop
executes the job
character vector

Additional parameters to configure how Hadoop executes the job, specified as a character vector. For
more information, see “Configuration File for Creating Deployable Archive Using the mcc Command”
on page 3-2.

files required for your MapReduce job payload to run — files that must be included
with generated artifacts
list of files

Files that must be included with generated artifacts, specified as a list of files.

Settings

Additional parameters passed to MCC — flags controlling the behavior of the compiler
character vector

Flags controlling the behavior of the compiler, specified as a character vector.

testing files — folder where files for testing are stored
character vector

Folder where files for testing are stored, specified as a character vector.

 Hadoop Compiler

5-3

packaged files — folder where generated artifacts are stored
character vector

Folder where generated artifacts are stored, specified as a character vector.

Version History
Introduced in R2014b

R2020a: Hadoop Compiler will be removed
Not recommended starting in R2020a

Hadoop Compiler app will be removed in a future release. To create standalone MATLAB
MapReduce applications, or deployable archives from MATLAB map and reduce functions, use the
mcc command.

5 Apps

5-4

	Deployable Archives
	Workflow to Incorporate MATLAB Map and Reduce Functions into a Hadoop Job
	Example Using the Hadoop Compiler App Workflow
	Prerequisites
	Procedure

	Include MATLAB Map and Reduce Functions into Hadoop Job

	Standalone Applications
	Workflow to Run Compiled Standalone Applications Against a Hadoop Cluster
	Run Standalone MATLAB MapReduce Application
	Prerequisites
	Procedure

	Hadoop Configuration
	Configuration File for Creating Deployable Archive Using the mcc Command
	Sample Configuration File

	Functions
	deploytool
	matlab.mapreduce.DeployHadoopMapReducer
	hadoopCompiler
	mapreducer

	Apps
	Hadoop Compiler

